Help us improve the FORRT website

Effect Size Bias

 

GOODMAN: When You’re Selecting Significant Findings, You’re Selecting Inflated Estimates

Replication researchers cite inflated effect sizes as a major cause of replication failure. It turns out this is an inevitable consequence of significance testing. The reason is simple. The p-value you get from a study depends on the observed effect size, with more extreme observed effect sizes giving better p-values; the true effect size plays no role.

Help us improve the FORRT website

We would be grateful if you could complete this survey. Your feedback will directly inform improvements to navigation, accessibility, and content structure.
Note:All answers are anonymous and will help us make the website better for everyone!

Take the Survey